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Abstract

Thermoelastic properties of various bi-continuous porous ceramics are simulated by a new finite element model. The model considers
various particle shapes which allow for an independent variation of pore volume and particle contact area. Phenomena like neck formation,
agglomeration, particle size distribution and coordination are included in the model geometry. Particle arrangement is modelled using cubic
super cells as well as random particle positions. Young’s moduli, Poisson’s ratios and stress concentration factors are simulated and thermal
shock resistance is estimated from these data. A close correlation between thermal conductivity and Young’s modulus is found for all types
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f microstructure. Stress concentration is strongly affected by the particle shapes in the contact region.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

Sintering of any ceramic starts with a green compact with
onvex weakly bonded particles and open pores. It forms sin-
ering necks, pore channels and finally closed pores at high
emperatures. The interpretation and prediction of sintering
ehaviour, e.g. the distribution of thermal stress, require the
nowledge of thermoelastic properties in all stages of sin-
ering. Vice versa, the knowledge of thermoelastic properties
llows an insight into microstructure development during sin-
ering if a sufficiently unique relation between microstructure
nd macroscopic properties can be established. Moreover,
orous ceramics are widely used as filters, membranes and as
hermal isolators or as a matrix phase in oxidic ceramic matrix
omposites (OCMC). For many applications, e.g. high ther-
al shock resistance, specific thermoelastic properties are

equired. A future design of those materials will rely on an
ccurate simulation of material properties from microstruc-
ures features.

Some thermoelastic properties in porous compacts are
simply determined by a rule of mixtures or by the respective
property of the solid phase, e.g. density, heat capacity
and coefficient of thermal expansion.1 On the other hand,
thermal conductivity and elastic coefficients are strongly
related to microstructure. Whereas in isotropic materials
thermal conductivity is determined by a single number,
elastic behaviour is described by two of a set of four
properties: Young’s modulus, Poisson’s ratio, bulk modulus
and shear modulus. In the present paper Young’s modulus
and Poisson’s ratio were used. (Bulk and shear modulus can
be easily derived from the former two.2) The consideration
of strength is more difficult, since it is usually limited
by flaws, which are not included in most microstructure
simulations. However, the stress concentration within the
microstructure was calculated in the present study.

Previous studies have concentrated on the investigation
of the relation between total pore volume and thermoelas-
tic properties of porous compacts.1,3–14 Polynomial equa-
tions have been derived heuristically. They were applied to a
large amount of experimental data8,11 which however demon-
∗ Corresponding author.
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strates the large uncertainty in the experimental data rather
than any theoretical justification of the polynomials. Varia-

955-2219/$ – see front matter © 2005 Elsevier Ltd. All rights reserved.
oi:10.1016/j.jeurceramsoc.2005.07.059



2654 F. Raether, M. Iuga / Journal of the European Ceramic Society 26 (2006) 2653–2667

tional principles have been used to obtain rigorous upper and
lower bounds for the properties of composites with given
properties of the participating phases.4,15 However, the ther-
moelastic properties of pore phase and solid phase in porous
compacts differ by at least three orders of magnitude, result-
ing in a large gap between lower and upper bounds. For
decades effective media theories have been developed as
well.3,12,16–20 Using effective media theories one can suf-
ficiently describe microstructures with closed pores. If the
pore fraction is small, the composite properties can be calcu-
lated with high accuracy for ellipsoidal pores.21 On the other
hand, for bi-continuous materials like porous compacts with
open pores, microstructure can only be considered through
the volume fractions of phases.21 A more specific descrip-
tion of microstructure was provided by the minimum solid
area approach.22,23 The minimum area of solid phase perpen-
dicular to the heat flux or applied force was used to estimate
the respective composite property. The advantage of the mini-
mum solid area approach is its simplicity and its applicability
to all kinds of microstructures. However, it will be shown
below that its predictions are not very accurate for many bi-
continuous microstructures.

Increasing computer power favours the simulation of spe-
cific microstructures. Heat flow has been simulated using
random walk24,25 and finite difference methods,26 but today
finite element based methods get more attention since they
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on thermoelastic properties. Using simplified microstructures
we aim at a better understanding of principal effects. The
evolution of microstructure is not simulated.

2. The finite element model

2.1. Particle shapes

Different solid particles have been used in the simula-
tions. Fig. 1 shows some elementary particle shapes within
their simple cubic unit cell. Truncated spheres (Fig. 1a)
were valuable in more complex particle arrangements (see
below). The truncated octahedron (Fig. 1b) was used to com-
pare the effect of curved particle surfaces to flat surfaces as
the latter can occur during sintering of crystalline particles
with anisotropic surface energy. The overlapping spheres and
cylinders (Fig. 1c) were considered since overlapping cylin-
ders were introduced by other authors.35,39 The sphere at the
centre of the cell has been added to be able to vary the radius
r of the cylinders—which is identical to the particle contact
radius—independently from the solid volume fraction. (For
the overlapping cylinders as well as for the truncated sphere
and octahedron the structure is completely described by the
solid volume fraction.)

A solid volume fraction of 70% has been used in
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re easily available and can be used for the calculation of ther-
al as well as mechanical properties.6,13,27–38 Although 2-D
odels are still used, many topological features, e.g. particle

onnectivity, cannot be adequately described in two dimen-
ions and generally 3-D models are to be preferred. There are
wo types of 3-D models: periodic lattices and random struc-
ures. The periodic lattices are calculated with spherical par-
icles or pores in a simple cubic (sc), body centred cubic (bcc)
r face centred cubic (fcc) arrangement.6 Sintering necks are
imulated using truncated spheres6 or sometimes overlapping
ylinders.39 Random microstructures are produced in differ-
nt ways. Often ellipsoidal particles or pores with randomly
hosen centres and more or less overlap are generated.6,37

hose random structures look much more similar to real
icrostructures. The disadvantage of both types of geomet-

ic models is that fundamental phenomena like sintering
eck growth and its effect on thermoelastic properties, can-
ot be described using simple particle shapes. It was shown
xperimentally that neck growth caused by surface diffusion
ncreases thermal conductivity40 and Young’s modulus41 dra-

atically without a change in porosity. Another important
henomenon that needs better theoretical insight is agglomer-
tion. Particle clusters forming dense regions interconnected
y less dense porous regions have been related to experimen-
ally observed smaller elastic moduli compared to homoge-
eous materials.42 Anyhow, the effect of agglomeration on
hermoelastic properties has not been simulated so far.

The purpose of the present paper is to introduce particle
hapes and arrangements, which allow for a simulation of
he effect of contact area, agglomeration and particle size
igs. 1–8. It was calculated from the radii and edge lengths
f the respective simple bodies using elementary geometry.
he inverse problem of finding the radii and edge lengths for
iven volume fractions has been solved numerically using
n-house software.

Fig. 2 shows a particle type, which allows a much larger
ariation of neck area than the overlapping sphere and cylin-
ers. It is formed by a cube (edge length b), which has 6 or
4 cylindrical contacts (with radius r) to its 6 neighbours.
lthough this particle type looks somewhat artificial, similar

o a Lego brick, it was considered helpful in understanding
icrostructures in intermediate stage sintering. Those struc-

ures are frequently formed by dense agglomerates loosely
onnected by small elongated particles. Fig. 3 shows a struc-
ure, which is very flexible too, but looks more similar to
n individual powder particle. It is formed by six truncated
quare pyramids based on the sides of an enclosed cube. The
ateral surfaces of the pyramids meet at a constant opening
ngle (similar to the dihedral angle) at the edges of the parti-
le contacts. The structure is completely determined by this
pening angle Θ and the volume fraction of solid phase fs:

fs = a3 + 8 h2b + 8 h b2 − 12 abh

a3 ;

h = b[1 + tan (Θ)−1]
−1

; (1)

ith b = edge length at contact area of pyramids (particle con-
act area = b2); h = height of pyramids; and a = edge length of
nit cell. Increasing the opening angle at constant volume
raction causes a drastic increase of the contact area (Fig. 3).
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Fig. 1. Simple cubic particles used in the FE simulations: (a) truncated sphere, (b) truncated octahedron, and (c) overlapping sphere and cylinders. Grey lines
indicate the unit cell.

Fig. 2. Extreme particle shapes used to describe microstructures with high solid volume fractions and small sintering neck areas: (a) cube with 6 cylindrical
contacts, and (b) cube with 24 cylindrical contacts.

Fig. 3. Particles formed by six truncated square pyramids based on the sides of an enclosed cube with different opening angles Θ: (a) Θ = 60◦, and (b) Θ = 120◦.

Fig. 4. Particles formed by minimising the interface energy at given ratio between neck radii r and edge length of unit cell a: (a) r/a = 0.5, (b) r/a = 0.6, and (c)
r/a = 0.7.
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Fig. 5. Cubic microstructure with (a) homogeneous and (b) inhomogeneous arrangement of small and large spherical particles.

Fig. 6. Cubic microstructure with spherical particles shifted towards (a) the centre and (b) the sides of the unit cell. Some particles were removed to get a better
view of the microstructure.

Since the plane faces of the structure with truncated
square pyramids only reflect materials with anisotropic
interface energy another microstructure has been generated
by looking for the particle pore interface with minimum
energy—assuming that the interface energy does not vary
with crystal direction (Fig. 4). A similar approach was at first
described by Beere.60 For given volume fractions of the two
phases and given spherical neck areas (with neck radius r), the
minimisation was performed by the computer program Sur-
face Evolver.43 It was started with a simple prescribed geom-

etry of cubic symmetry and with correct volume fractions.
(Due to the high symmetry of the cubic structure only 1/48th
of the volume of the unit cell was actually minimised and
the structures shown in Fig. 4 were constructed by symmetry
operations.) The interface was composed of small plane trian-
gular facets defined by the coordinates of their vertices. The
vertices were moved after subsequent iterations according to
an individual force vector. The force vector was calculated
locally for each vertex from the tensile stresses originating
from the neighbouring vertices. Appropriate constraints were

Fig. 7. Cubic microstructure with spherical particles: (a) 8 and (b) 12 nearest neighbours (bcc and fcc structures, respectively).
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Fig. 8. Random structure of spherical particles with periodic boundaries and the ratio between total contact area and total pore–solid interface area of 0.1; on
average having (a) 4.75 contacts per particle and (b) 7.5 contacts per particle. Here the solid particles are transparent and the contact areas are represented with
the grey colour.

used to ensure that the cubic symmetry was maintained during
the minimisation. The mesh was successively refined ending
up with about 100–200 vertices. Convergence was achieved
after a total of about 100 iterations. Computational time was
less then 1 min on a usual PC. From Fig. 4 it can be seen that
curvature at the interface changed from convex to concave if
the sintering neck radius, r was increased.

2.2. Particle arrangement

Between the simple cubic structures described in the pre-
vious paragraph and random structures described below, an
intermediate step was introduced. Super cells of cubic sym-
metry with some tens of particles have been used to study the
effect of particle size, displacement and co-ordination. Tak-
ing care of the requirement to maintain the cubic symmetry
the allowed geometrical variations are reduced. From all the
particles shown in the previous section only truncated spheres
have been used for the simulations of super cells and random
structures, because spherical geometry can be applied most
conveniently in more complex particle arrangements.

The effect of particle size was studied using a bimodal
distribution with two different sphere diameters. Particle
arrangement was either homogeneous, i.e. smaller particles
were surrounded by larger particles and vice versa, or inho-
mogeneous, i.e. the smaller particles were in the centre of
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was used which generates a constant gradient in mass. For
that the centres of the particles were shifted by a displacement
vector whose ith component ui was calculated according to:

ui = ri − ci + a

2
(ci − ri)

dshift

a
; (2)

with ri = component i of initial centre position of particle,
ci = component i of centre of unit cell, a = edge length of
unit cell, dshift = dimensionless parameter, which controls the
amount of the displacement.

Parallel to the coordinate axes, the displacement was
largest at a distance of a/4 from the centre where it amounted
to adshift/16. If dshift was positive, the particles were shifted
towards the centre and if it was negative, the particles were
shifted towards the sides of the unit cell which corresponded
to agglomeration and pore formation, respectively (Fig. 6).

Besides the structures with 6 nearest neighbours shown
in the previous section, structures derived from bcc and fcc
lattices with 8 and 12 nearest neighbours have also been used
(Fig. 7). Therefore, the number of nearest neighbours used
in the simulations covered the range of nearest neighbours
observed in green compacts (6–8) and sintered materials
(12–14).44 Considering the restrictions described in the pre-
vious paragraphs, particle size, displacement and number of
nearest neighbours could be varied at the same time without
violating the cubic symmetry of the super cell.
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he super cell and the larger particles at the edges. Fig. 5
hows two different unit cells with 64 particles—each having
nearest neighbours—and homogeneous or inhomogeneous
article arrangement, respectively. The homogeneous and
nhomogeneous arrangement should reflect different attrac-
ive and repulsive forces between the smaller and larger
articles during the forming process. (To reduce the num-
er of parameters in the simulations, the number fraction of
arger and smaller particles was always 50% and their ther-

oelastic properties were equated.)
Particle displacements were introduced to simulate

gglomeration or the formation of large pores during sin-
ering. Considering cubic symmetry, a simple transformation
Random structures were derived from a Poisson distri-
ution of sphere centres within a cube. Initial centre posi-
ions were obtained by a standard random number generator.
ypically, four to eight initial spheres were used for one
icrostructure. Particle compaction was considered by start-

ng with a large unit cell and subsequently reducing its size by
n affine transformation of the particle centres. The centres
f contacting spheres were shifted by an individual displace-
ent vector for each sphere, which was calculated from all

ts contacts, to prevent overlap with neighbouring spheres.
hen density was high enough, the movement of the spheres
as restricted by other contacts. Then overlapping of spheres
as allowed and the total elastic energy of all spheres within
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the unit cell was minimised by applying a common scaling
factor to the individual displacement vectors. The scaling
factor was always between 0 (soft sphere limit) and 1 (hard
sphere limit). Elastic energy was determined from the sum
of the local energies determined by contact area and sphere
radii.45 According to Gusev et al.32 periodic boundaries were
introduced by shifting those parts of spheres, which lay out-
side the cube to the respective opposite sides of the cube
(Fig. 8). This increased the total number of spheres 14–21.
After the random structures had been determined, their valid-
ity was carefully checked. The criteria are explained in the
next paragraph. Since many structures had to be generated
to find one valid structure the computational effort for gen-
erating the random structures was much higher than for the
cubic super cells. The random structures were produced by
an in-house software running overnight. It enabled the gen-
eration of random structures with additional specified geo-
metric properties, e.g. a fixed average number of contacts
per particle, by automatically generating and testing thou-
sands of structures until the required properties were met
(Fig. 8a and b).

Sintering necks were constructed as planes defined by the
circular edge of the overlap region of two spheres. To avoid
conflicts in the construction of sintering necks only those
arrangements were chosen for the FE simulations, which did
not have any region where more than two particles over-
l
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(The arithmetic sum of the chord lengths would simply
yield the volume fraction of solid phase,46 therefore the
square was introduced to get a larger weight of the longer
chords.)

The homogeneity of the microstructure was measured by
an auto-correlation parameter ca, which was calculated by
summing up the products of the chord lengths of neighbour-
ing particles:

ca =
∑

icici−1
∑

ic
2
i

. (4)

2.3. FE mesh and boundary conditions

The software package ANSYS® (ANSYS Inc, version
8.1) and a PC work station (Intel Pentium 4 Xeon 2.8 GHz)
were used for the FE simulations. Utilising the symmetry
of the cubic unit cells only 1/8th of the cell volume was
actually simulated, whereas for the random structures the
complete cell had to be considered. The microstructures were
constructed from simple 3-D geometric entities like cubes
or spheres and appropriate Boolean operations, reflections
and rotations. (With microstructures generated by the pro-
gram Surface Evolver the nodes were directly imported into
ANSYS and used as nodes for the thermal and mechanical
s
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apped. For the same reason structures were disregarded
hich had any sphere centre lying within another sphere.
oth constraints severely limited the possible range of param-
ters: e.g., for a cubic super cell with six nearest neighbours
nd a solid volume fraction of 70% the maximum allow-
ble parameter dshift was 24% which leads to a maximum
isplacement of 2.6% of the length of the unit cell. But the
estrictions were considered useful since the unique defini-
ion of sintering necks was important for the interpretation of
he results.

Some geometric data were derived from the microstruc-
ure. Most important were the interface area between solid
nd pore phase and the neck area at the particle contacts.
lso the minimum solid area perpendicular to the flux or

orce direction was derived (according to the minimum solid
rea approach22). Finally, a chord length analysis was per-
ormed by randomly selecting the starting point and direction
f 10,000 test lines within the microstructure and determining
he solid and pore fractions, the number of interfaces and the

ean value of the squared solid chord lengths. The solid and
ore fractions and the number of interfaces from chord length
nalysis were used to control the microstructure (the agree-
ent to the respective values determined exactly was within

%). The mean value of the squared solid chord lengths cs2

as used as a measure for the length of force transmission:

s2 =
∑

ic
2
i∑

ici

; (3)

ith ci = chord length of individual particles.
imulations.)
Meshing was performed after generating at first a 2-D

esh at the interfaces between solid and pore phase, at the
eck areas and the sides of the unit cell with a fixed num-
er of nodes (typically 6–10) at the line segments within
he microstructure. This ensured that finer regions, e.g. the
ontact region at small sintering necks, were meshed with
sufficiently large number of elements. (To reduce com-

utation time the number of nodes at very small line seg-
ents was somewhat reduced.) Depending on its complexity

0,000–80,000 elements have been used to describe one
icrostructure. Solid and pore volume were meshed with the

lements SOLID87 and SOLID187 for thermal and mechan-
cal simulations, respectively. The material properties (ther-

al conductivity and Young’s modulus) of the pore phase
ere chosen six orders of magnitude smaller than the respec-

ive properties of the solid phase. Poisson’s ratios of solid and
ore phase were always set to 0.25. (The results of the present
aper would have been unchanged by simply not meshing the
ore phase but the same FE model was also used for the sim-
lations of composites with two solid phases.)

With cubic structures, thermal simulations have been per-
ormed by setting two opposite sides of the unit cell to
ifferent fixed temperatures and applying adiabatic boundary
onditions to the remaining four sides. Thermal conductivity
was calculated from the heat flux W (averaged at one side
ith fixed temperature) by:

= W

a �T
(5)
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with �T = temperature difference at opposite sides of unit
cell.

The elastic properties in structures of cubic symmetry
were determined by applying a uniaxial tensile strain. Two
opposing sides of the unit cell were strained by a fixed small
amount ε whereas a constraint on the other sides ensured that
they remained plane during the simulation. From the resulting
stress σ at one of the two strained sides the “single crystal”
Young’s modulus E and from the resulting strain at the per-
pendicular sides ε⊥ the “single crystal” Poisson’s ratio ν were
calculated by:

E = σ

ε
; ν = ε⊥

ε
; G = σs

εs
. (6)

Different from thermal conductivity the elastic properties of
cubic structures are not isotropic and therefore a second sim-
ulation was required. It was performed by applying a simple
shear strain εs and calculating the shear modulus G from
the resulting shear stresses σs according to Eq. (6). The pro-
cedure for non-cubic symmetry is described below. Always
linear elastic behaviour was considered.

The stress concentration factor fσ was calculated from the
ratio of the maximum principal tensile stress σ1max within the
unit cell to the applied tensile stress σ:
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the unit cube:

E =
∑

iEivi

a3 ; (9)

with E = respective quantity, vi = volume of element i,
a = edge length of unit cell. The system of linear Eq. (8) was
solved by an in-house software using singular value decom-
position SVD.47 A number of three and six simulations with
different loads were required for each structure to determine
all λij and cij, respectively.

From the λij and cij the polycrystalline material prop-
erties λ, E and ν were estimated according to the
Hashin–Shtrikman4,15 and Voigt–Reuss–Hill48–50 approx-
imation, respectively. Although those approximations are
still widely used, they are considered inaccurate in very
anisotropic media.51 Therefore, an additional simulation of
polycrystalline properties was performed: the unit cell was
replaced by a single hexahedral element of a homogeneous
anisotropic material (SOLID70 and SOLID64 for thermal
and mechanical simulations, respectively). Thermal or elas-
tic material properties of the hexahedral elements were set
to the values obtained for the respective unit cell. Then a
large cube was constructed from 10 × 10 × 10 of such ele-
ments where the orientation of the material property ten-
sor within each element has been randomly chosen. The
material properties of the large cube were determined by
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σ = σ1max

σ
. (7)

Since stresses were largest at the edges of the particle con-
acts, the stress concentration factor actually was determined
y averaging the 1st principal stress at all nodes at the edge
f individual contacts and selecting the maximum of these
veraged values.)

The FE solution was obtained by searching the minimum
f the quadratic functional of the system using a conjugate
radient method, i.e. the solutions for the degrees of freedom
d.f.) were calculated by iterating the system equations to
onvergence, starting with an assumed zero value for all d.f.s
nd following orthogonal residual vectors. Computing time
as about 5 min for one direction of applied strain or thermal
radient.

For the random microstructures loads were applied in dif-
erent directions. For heat flow the six independent elements
ij (with i ≤ j, j ≤ 3) of the symmetric thermal conductivity

ensor K were determined by applying temperature gradients
arallel to the edges of the unit cell. For stress simulations
oth tensile and shear strains were applied in different direc-
ions to determine the 21 independent elements cij (with i ≤ j,
≤ 6) of the symmetric stiffness matrix C:

= Cε; q = K ∇T ; (8)

ith σ = stress vector, ε = strain vector, q = heat flux vector,
T = temperature gradient. Stresses, strains, heat flow and

emperature gradients were determined from the FE solution
y calculating the weighted average over all elements within
pplying loads as described for the small unit cell. Nearly
sotropic behaviour was obtained and computation time was
ess than one minute for this last step of the simulation. All
ata obtained from this “polycrystal” simulation were within
he range of the Hashin–Shtrikman and Voigt–Reuss–Hill
pproximation, respectively.

.4. Convergence and verification

Fig. 9 shows the convergence of the FEM results when
esh size was decreased by increasing the number of nodes

n the line segments of the model. A sufficient convergence
or thermal conductivity, Young’s modulus and Poisson’s
atio was achieved within 2% with a mesh size corresponding
o 6–10 nodes. Note that in Fig. 9 and in the following figures
caled material properties were used, where the respective
roperty of the solid phase corresponds to 100%. The conver-
ence for the stress concentration factor was distinctly worse
hich was attributed to its local determination in regions

howing a very high stress gradient. So in the following
ections stress concentration factors should be considered
s a rough estimate. Altogether convergence was much bet-
er than in simulations with hexahedral elements. Although
exahedral elements are widely used, they were not appro-
riate to represent the fine structures at the particle contacts
n the present study. For spherical particles with very small
ontacts analytical solutions exist for thermal conductivity52

nd elastic properties.45,53 Fig. 10 shows a comparison of
ur FE simulation with the analytical results. (Note that a
caled neck area was used which was calculated by divid-



2660 F. Raether, M. Iuga / Journal of the European Ceramic Society 26 (2006) 2653–2667

Fig. 9. Convergence of FE simulation determined by variation of material
properties with number of nodes on line segments (mesh size) for a simple
cubic arrangement of truncated spheres (solid volume fraction 70%): (a)
scaled thermal conductivity λs and Young’s modulus Es and (b) inverse
stress concentration factor 1/fσ and scaled Poisson ratio νs.

Fig. 10. Comparison of material properties calculated by present FE model
and theoretical small radii solutions (srs): (a) scaled thermal conductivities
for sc, bcc and fcc structures and (b) scaled Young’s and shear moduli for
simple cubic arrangement (srs equations from Ref. 45,52,53)

ing the two particle contact area by the side area of the cube.)
The excellent agreement demonstrates that the FE model was
appropriate for the simulation of structures with very small
particle contacts. (Unlike the other figures that show poly-
crystalline results obtained by the FE method described in
the previous paragraph, Fig. 10 shows single crystal material
properties in the [1 0 0] direction.)

To avoid handling errors the simulations were performed
completely in batch mode. Geometric properties of the model
were controlled twice after generating the model in ANSYS
and after meshing. If deviations were detected between solid
volume fraction, particle contact areas or interface areas to
those values determined by the independent computer pro-
gram, which had generated the structures the simulation was
automatically aborted.

3. Results and discussion

Fig. 11 shows the resulting distributions of heat flux and
stress in a particle, which had been subjected to a thermal
gradient and uniaxial tensile strain, respectively. One can see
that flux and stresses are largest in the contact region. Espe-
cially large values are observed at the edges of the sintering
necks. This was already observed in previous work on heat
flow.26 The concentration of heat flux and mechanical stress
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t the edges of the particle contacts was observed for vari-
us particle shapes and arrangements investigated during the
resent study. Fig. 12 shows thermal conductivity, Young’s
odulus, Poisson’s ratio and stress concentration factor for

ifferent particle shapes. Solid volume fraction was always
0% and the particle arrangement was simple cubic. For com-
arison also a simple cubic microstructure with 30% of closed
pherical pores was presented (Fig. 12) because its ‘contact
rea’—which corresponds to the minimum solid area—was
uch higher than for the bi-continuous microstructures.
The differences in the thermoelastic properties of particles

f very different shapes (compare Figs. 1, 3 and 4) are sur-
risingly small. Only the Lego brick structure (Fig. 2) shows
onsiderably lower thermal conductivities and Young’s mod-
li than the other particle shapes. Besides this structure, which
s rather extreme, the small differences between properties of
ifferent shapes and equal contact areas are in good agree-
ent to the minimum solid area approach. However, there are

onsiderable quantitative differences reflected by the convex
urvature of the FEM curves in Fig. 12. (The minimum solid
rea approach would simply yield straight lines through the
rigin with slope 1.) The reason for the discrepancy is seen
n the concentration of heat flux and stress at the edges of
he particle contacts (compare Fig. 11). This allows for a
arger heat and force transfer—especially with small particle
ontacts—than it would be expected from a purely geomet-
ical consideration.

The curvature of the Young’s modulus data was somewhat
maller than for the thermal conductivity data (Fig. 12a and
). The steeper increase at small particle contacts for thermal
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Fig. 11. Contour maps of: (a) heat flux and (b) first principal stress. Temperature gradient and strain were applied in the z-direction.

conductivity corresponded to the larger gradient in heat flux
across the particle contact compared to the stress gradient
(compare Fig. 11). Considering polycrystals, Poisson’s ratio
did not go to zero with decreasing contact area (Fig. 12c). For
the cube structure with 24 cylindrical contacts it was even
nearly independent of contact area. By way of contrast the
Poisson’s ratios of the respective single crystals in the [1 0 0]
direction all approached zero with decreasing neck area (not
shown in Fig. 12). Other groups have also suggested a conver-
gence of the Poisson’s ratio to finite values with decreasing
contact area13,37 which has been controversially discussed
based on different experimental54 and theoretical results.55

The stress concentration factor fσ took very high values at
small contact areas, which reflected the inferior strength of
porous compacts during the first sintering stage. (Note that
1/fσ is shown in the figures to facilitate comparison with
the other properties.) The structures with cylindrical con-
tacts (compare Figs. 1c, 2a and 2b) show a distinctly smaller
stress concentration at medium contact areas than the other
structures. This was attributed to the more homogeneous dis-
tribution of stress along the cylindrical contacts compared to
the notched contact regions of the other particle shapes. The

particle shapes with minimised energy show a steep increase
of 1/fσ when neck area exceeds 30% (Fig. 12d). This was
correlated to a similar increase of the dihedral angle which
leads to a smoothing of the particle surfaces in the contact
region (compare Fig. 4c).

Fig. 13 shows the effect of particle displacement in a cubic
super cell with 64 spherical particles and a solid volume frac-
tion of 70%. A displacement of the particles towards the
centre had exactly the same effect as a displacement with
the opposite sign reflecting the high symmetry of the trans-
formation used (Eq. (2)), in which the corners and the centre
of the unit cell simply changed their role as nucleation cen-
tre for agglomerates. Increasing displacement was correlated
with a decrease in thermal conductivity, Young’s modulus
and Poisson’s ratio (Fig. 13). This was explained qualita-
tively by the formation of a matrix of weakly bonded par-
ticles in which the ‘agglomerates’ of more strongly bonded
particles were embedded. (It is well known that for inclu-
sions the matrix properties dominate the properties of the
composite.21) Fig. 13b and c also show various geometric
properties of the microstructures. The number of contacts
per particle was six for all displacements shown. (It would

F lume fr
(

ig. 12. Material properties at different particle shapes and constant solid vo
c) scaled Poisson’s ratio, and (d) inverse stress concentration factor.
action of 70%: (a) scaled thermal conductivity, (b) scaled Young’s modulus,
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Fig. 13. Properties of cubic structures at different displacements of trun-
cated spherical particles and constant solid volume fraction of 70%: (a)
scaled thermal conductivity λs, Young’s modulus Es and Poisson ratio νs,
(b) related inverse stress concentration factor 1/fσ and minimum solid area
MSA, (c) contacts per particle N/n, average squared solid chord length cs2 ,
auto-correlation parameter ca and ratio between total contact area and total
pore–solid interface area as.

strongly decrease for larger displacements but this would not
reflect reasonable structures since the agglomerates would
be completely isolated within the pores.) Since the particle
contacts within one microstructure had different sizes the
scaled neck area could no longer be used as a measure for the
geometrical change. Instead the ratio as from total contact
area and total pore–solid interface area within the unit cell
was used. The parameter as is dimensionless and indepen-
dent of the size of the unit cell. It showed a small increase
with increasing particle displacement which reflected the
non-linear increase of contact area with decreasing centre
distance of spherical particles. Also the squared solid chord
lengths cs2 , the auto-correlation parameter ca (compare Eqs.
(3) and (4)) and the minimum solid area are shown in Fig. 13.
Minimum solid area decreased with increasing displacement
and decreasing material properties (Fig. 13b) according to
the minimum solid area approach.

Fig. 14 shows the effect of different particle size ratios
in the cubic super cell with 64 spherical particles and a
solid volume fraction of 70%. The thermoelastic properties

for a homogeneous arrangement of large and small particles
(compare Fig. 5) versus the particle size ratio are displayed
in Fig. 14a and the corresponding geometric parameters
in Fig. 14b and c. (The particle size ratio was defined by
the ratio of the volumes of a large and a small particle,
respectively.) At a size ratio between 1 and 2.5 there was
a decrease in the curves of thermal conductivity and Young’s
modulus. The inverse stress concentration factor showed a
pronounced decrease at this size ratio (Fig. 14b). This was
correlated to a decrease in the average number of contacts
per particle (compare Fig. 14c), caused by vanishing parti-
cle contacts between neighbouring particles of the small size
category. The high stress concentration at this size ratio was
attributed to the smallest particle contacts. Stress concentra-
tion decreased after these contacts were released. The results
for an inhomogeneous arrangement of large and small parti-
cles and the corresponding geometric parameters are shown
in Fig. 14d–f. A similar correlation between the material
properties and the average number of particle contacts was
observed as in the case of homogeneous arrangement. Dif-
ferent from the homogeneous arrangement, an increase in
Young’s modulus and thermal conductivity was observed for
large size ratios (Fig. 14d) with the inhomogeneous arrange-
ment. This was attributed to the load-bearing capability of
the spatial structure shown in Fig. 5b, which was enhanced
by the volume increase and the corresponding increase of
c
i
i
e
l
o
c
t
p
(

e
w
t
s
s
f
T
F
c
u
p
t
c
W
l
A
s
t
i

ontact area between the large particles at the edges. The
ncrease of Young’s modulus was correlated to an increase
n the squared solid chord lengths cs2 , which was consid-
red reasonable since cs2 was introduced as a measure for the
ength of force transmission that was very large at the edges
f the unit cell. There was a close correlation between thermal
onductivity and Young’s modulus (Fig. 14a and d). Correla-
ion between minimum solid area and material properties was
oor—especially in the homogeneous particle arrangement
Fig. 14a and b).

The effect of particles coordination on thermoelastic prop-
rties is shown in Fig. 15. The symmetry of the unit cell
as varied from sc to bcc and fcc for a fixed volume frac-

ion of solid phase of 80% (Fig. 15a). Additionally the same
tructures were calculated for a fixed area ratio as of 0.1 corre-
ponding to a solid volume fraction fs of 61.5, 76.7 and 80.1%
or the sc, bcc and fcc structures, respectively (Fig. 15d).
he geometric parameters to these structures are shown in
ig. 15b, c, e and f. Thermoelastic properties decreased when
oordination number was increased with constant solid vol-
me fraction (Fig. 15a). This could be explained by the
revious results considering the area ratio as of these struc-
ures, which was drastically decreased by 80% when the
oordination number was increased from 6 to 12 (Fig. 15c).
hen the coordination number was increased at the same

evel of as the thermoelastic properties increased (Fig. 15d).
lso the stress concentration factor decreased which demon-

trated that stress was distributed more homogeneously in
he microstructures with more particle contacts. Whereas the
ncrease in coordination number was related to an increase
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Fig. 14. Properties of cubic structures at different size ratios of truncated spherical particles and constant solid volume fraction of 70%: (a) scaled thermal
conductivity λs, Young’s modulus Es and Poisson ratio νs, for particles arranged homogeneously, (b) related inverse stress concentration factor 1/fσ and minimum
solid area MSA and (c) related contacts per particle N/n, average squared solid chord length cs2 , auto-correlation parameter ca and ratio between total contact
area and total pore–solid interface area as, (d) material properties for particles arranged inhomogeneously, (e) related inverse stress concentration factor and
minimum solid area and (f) related geometric properties.

in the auto-correlation parameter for constant volume frac-
tions (Fig. 15a and c), with constant area ratio this increase
was related to an increase in the squared solid chord lengths
(Fig. 15d and f). As in Fig. 14 correlation between minimum

solid area and material properties was poor—especially with
fixed solid volume fraction fs (Fig. 15a and b).

Fig. 16 shows a summary of results obtained for random
arrangements of spheres. In all cases the solid volume fraction

F st neigh
r ed inve
r o-correl
i ontact a
c

ig. 15. Material properties of cubic structures at different number of neare
atio νs, for particles with constant solid volume fraction of 80%, (b) relat
elated contacts per particle N/n, average squared solid chord length cs2 , aut
nterface area as, (d) material properties for particles with constant scaled c

oncentration factor and minimum solid area and (f) related geometric properties.
bours: (a) scaled thermal conductivity λs, Young’s modulus Es and Poisson
rse stress concentration factor 1/fσ and minimum solid area MSA and (c)
ation parameter ca and ratio between total contact area and total pore–solid
rea as = 0.1 at different solid volume fractions fs, (e) related inverse stress
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Fig. 16. Material properties at random arrangements of truncated spheres (solid volume fraction 70% and scaled contact area as = 0.1): (a) scaled thermal
conductivity λs and Young’s modulus Es, (b) scaled Poisson’s ratio νs, (c) average squared solid chord length cs2 and auto-correlation parameter ca for different
coordination numbers, (d–f) corresponding quantities for different particle displacements, and (g–i) corresponding quantities for different particle size ratios.

fs was 70% and the area ratio as was 0.1, but coordination
number, particle displacement and particle size ratio were
changed (Fig. 16a–c, respectively). Each point in Fig. 16 was
the mean value of 10 independent runs for different random
structures obtained with equal boundary conditions. (Note
that the error bars in Fig. 16 indicate uncertainty derived
from statistical spread of results from different simulation
runs and not measuring errors.) Thermoelastic properties
increased with increasing coordination number (Fig. 16a and
b), which corresponds to the cubic lattices if the area ratio
was fixed (compare Fig. 15d). A particle displacement to
the centre of the unit cell caused an increase and an out-
ward displacement a decrease of thermal conductivity and
Young’s modulus (Fig. 16d). This was attributed to a more
efficient formation of a load-bearing frame by concentrat-
ing the spheres in the centre compared to the less dense
distribution on the surfaces of the unit cell. An increase of
material properties was also observed with increasing par-
ticle size ratio (Fig. 16g and h). This was explained by
the improvement of force and heat transmission within the
large spheres, which lead to higher stresses and tempera-
ture gradients at the particle contacts. Minimum area was
not determined for the random structures. Since it could not
be expected that several particle contacts were in the same
plane the minimum solid area concept was considered appli-
cable only after some modification. The other geometric
p
y
p

4. Conclusions

Particle shapes which allow for an independent variation
of contact area and solid volume fraction (compare Figs. 2–4)
offer much larger flexibility in the modelling of microstruc-
tures than the widely used truncated spheres. For this reason
additional particle shapes and arrangements were used to
simulate bi-continuous structures, which occur in porous
ceramics. It was shown that phenomena related to particle
arrangement could be simulated in cubic super cells. These
model structures were not proposed to get an accurate imag-
ing of real structures, but to understand the effects, which
contribute to microstructure property relations. Many more
cubic model structures are possible than were used in the
present paper. They have to be constructed by some abstrac-
tion from the real structures, which can readily be done.

Random structures have the advantage to reproduce the
disorder of real structures. It has been shown that they offer
more flexibility to control simultaneously geometric param-
eters like solid volume fraction, contact area and coordina-
tion number than cubic structures. This makes them more
appropriate to investigate the influence of one microstructure
parameter without unwillingly changing other parameters.
However, the use of random structures without such control
is at a disadvantage compared to cubic structures since inter-
pretation of results will be difficult. A disadvantage of the
r
w
f

roperties which were calculated from chord length anal-
sis did not show a clear correlation to the thermoelastic
roperties.
andom microstructures was the computational effort, which
as two to three orders of magnitudes larger than the effort

or an accurate simulation of cubic structures.
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Thermal conductivity and Young’s modulus were closely
correlated in all porous compacts investigated in the present
study. Parameters like coordination number, particle size dis-
tribution and shape, agglomeration, pore volume and contact
area affected both properties similarly. The largest changes
were caused by the contact area between the particles. There-
fore, in comparing porous ceramics with different microstruc-
tures thermal conductivity as well as Young’s modulus are a
good measure for changes in contact area. Together with the
measurement of total pore volume they can provide a valu-
able complement to ceramographic methods. Although the
Young’s modulus showed the same trend as the thermal con-
ductivity, the scaled Young’s moduli were always smaller
by 20–50% than the respective scaled thermal conductivity
data. This was attributed to the larger capability of heat flux
to bypass thermal barriers compared to force transmission,
which is most efficient along straight lines. Microstructure
parameters which were determined in the present study by
chord length and minimum solid area analysis, i.e. squared
chord lengths, auto-correlation etc., did not show unambigu-
ous correlation to the changes of thermoelastic properties.
Some of the phenomena could be correlated to a specific
parameter, but the unambiguous interpretation was obscured
by other parameters, e.g. number of particle contacts and size
distribution, which cannot be derived from image analysis of
polished sections with real materials. Considering the large
e
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Fig. 17. Scaled thermal shock resistance estimated for simple cubic struc-
tures and different particle shapes at a solid volume fraction of 70%: cube
with 6 cylindrical contacts, cube with 24 cylindrical contacts, enclosed cube
with 6 truncated square pyramids.

strength σ was proportional to 1/fσ which requires that critical
flaws do not interfere with microstructure changes.) Thermal
shock resistance for the Lego brick like particles shown in
Fig. 2 was much higher than that for the truncated pyramid
particles shown in Fig. 3. Assuming that there are no other
effects reducing the strength, a very large influence of particle
shape on thermal shock resistance was predicted. If the pore
phase is replaced by another solid phase, additional stresses
arise due to mismatch in thermal expansion. Those binary
composites were already simulated using the same model as
the one used in the present study. Strength was significantly
affected by thermal stresses.58

Although the present results are considered helpful in
understanding some basic relations between microstructure
phenomena and material properties, the formation of the
microstructures was not considered yet. Future work will con-
centrate on the effect of diffusion on neck geometry and the
investigation of more realistic microstructures.
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ffort of sample preparation and image analysis to achieve
hese parameters it is proposed to utilise measurements of
aterial properties for the investigation of microstructure

henomena. The advantages of this inverse procedure are
nhanced by the opportunity to obtain thermoelastic prop-
rties by in situ measurements during sintering of ceramic
aterials.40,56

Stress concentration in porous ceramics strongly depends
n particle shape (compare Fig. 12). It can be decreased by
moothing the notches at the particle contacts. This can be
ealised by increasing the dihedral angle and by using small
article bridges between larger particles or particle clusters.
n example of the use of the simulation could be the design
f porous ceramics with high thermal shock resistance. For
ost ceramic samples the Biot number β is very small. Then

hermal shock resistance �T/t is proportional to57:

�T

t
∝ σ(1 − ν)

Eαβ
; β = rh

λ
; σ ∝ 1

fσ

⇒ �T

t

∝ C
(1 − ν)λ

fσE
; (10)

ith σ = strength, α = coefficient of thermal expansion,
= characteristic length of heat transfer, h = surface heat

ransfer coefficient and C = constant including those param-
ters which only weakly depend on microstructure. Using
he right part of Eq. (10), thermal shock resistance was esti-

ated from the thermal conductivity λ, Young’s modulus
, Poisson’s ratio ν and inverse stress concentration factor
/fσ shown in Fig. 12 (Fig. 17). (Thereby it was assumed that
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